Introducing Supersymmetric Frieze Patterns and Linear Difference Operators
نویسندگان
چکیده
We introduce a supersymmetric analog of the classical Coxeter frieze patterns. Our approach is based on the relation with linear difference operators. We define supersymmetric analogs of linear difference operators called Hill’s operators. The space of these “superfriezes” is an algebraic supervariety, which is isomorphic to the space of supersymmetric second order difference equations, called Hill’s equations.
منابع مشابه
Linear Difference Equations, Frieze Patterns and Combinatorial Gale Transform
We study the space of linear di↵erence equations with periodic coe cients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of combinatorial Gale transform which is a duality between periodic di↵erence equations of di↵erent orde...
متن کاملSupersymmetric Construction of Exactly Solvable Potentials and Non-linear Algebras
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found t...
متن کاملNo-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
An obstacle to realize supersymmetry on a lattice is the breakdown of Leibniz rule. We give a proof of a no-go theorem that it is impossible to construct a lattice field theory in an infinite lattice volume with any nontrivial field products and difference operators that satisfy the following three properties: (i) translation invariance, (ii) locality and (iii) Leibniz rule. We then propose a w...
متن کاملCoxeter’s Frieze Patterns and Discretization of the Virasoro Orbit
We show that the space of classical Coxeter’s frieze patterns can be viewed as a discrete version of a coadjoint orbit of the Virasoro algebra. The canonical (cluster) (pre)symplectic form on the space of frieze patterns is a discretization of the Kirillov symplectic form. We relate a continuous version of frieze patterns to conformal metrics of constant curvature in dimension 2.
متن کامل2-Frieze patterns and the cluster structure of the space of polygons
We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of n-gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus 0 curves with n marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015